Large-amplitude oscillations and chaos in a Hamiltonian plasma system with many degrees of freedom.
نویسندگان
چکیده
Taking the beam-plasma system as a reference Hamiltonian system with many degrees of freedom, the connection between the development of large amplitude oscillations and stochasticity of the system (measured through the time-dependent maximum Lyapunov exponent) is investigated. It is found that the development of self-consistent large amplitude oscillations occurs in correspondence with the onset of chaos, and is related to a well defined change of topology of the phase space of the system. It is also shown that in a (Hamiltonian) linearly stable regime the development of large amplitude oscillations can occur when weakly dissipative processes are introduced.
منابع مشابه
Investigation of strong force influence on behavior of nuclear energy levels in Calcium and Titanium isotopes: Based on quantum chaos theory
The atomic nucleus is a complex many-body system that consists of two types of fermion (neutron and proton). They are in the strong interaction. The statistical properties of energy levels and influence of strong force between these fermions are well described by random matrix theory. Resonance of energy levels depends on the Hamiltonian symmetry placed in one of the GOE, GUE and GSE ensembles ...
متن کاملSelf-consistent chaos in the beam-plasma instability
The effect of self-consistency on Hamiltonian systems with a large number of degrees of freedom is investigated for the beam-plasma instability using the single-wave model of O’Neil, Winfrey, and Malmberg. The single-wave model is reviewed and then rederived within the Hamiltonian context, which leads naturally to canonical action-angle variables. Simulations are performed with a large (1 04) n...
متن کاملChaos in the Thermodynamic Limit 3
We study chaos in the Hamiltonian Mean Field model (HMF), a system with many degrees of freedom in which N classical rotators are fully coupled. We review the most important results on the dynamics and the thermodynamics of the HMF, and in particular we focus on the chaotic properties. We study the Lyapunov exponents and the Kolmogorov– Sinai entropy, namely their dependence on the number of de...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملMeasures of Chaos in Hamiltonian Systems
Hamiltonian systems with two or more degrees of freedom are generally nonintegrable which usually involves chaotic dynamics. The size of the chaotic sets determines for a large part the nature and influence of chaos. Near stable equilibrium we can obtain normal forms that often produce ‘formal integrability’ of the Hamiltonian system and at the same time produce rigorous but not necessarily opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2004